Tag: 上海夜网ME

first_imgSteelhead trout have proved quite capable of abandoning the sea for a life in fresh water. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Although we tend to think of evolution as happening over thousands, if not millions, of years, critical changes can take little more than a century. That’s what happened with a group of steelhead trout transplanted from the salty seas of California to the fresh waters of Lake Michigan for game fishermen in the 1890s. A new study shows that the fish, which typically live part of their lives in the ocean like salmon, developed key genetic differences that allowed it to live wholly in freshwater—in little more than 100 years.The discovery shows how quickly organisms can adapt to a new lifestyle—if they have some of the right genes to start with, says Michael Blouin, a geneticist at Oregon State University in Corvallis. “The work is a nice example” of how evolution can happen “over very short time periods.”Steelhead already had a taste for freshwater. They hatch in rivers hundreds of kilometers from the Pacific, spend long periods as adults in the ocean, then return to their home rivers to spawn. And they even have a form—the popular rainbow trout—that lives out its whole life in freshwater streams. But that saltwater steelhead so readily made Lake Michigan their full-time home was surprising. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe This saltwater trout evolved to live in freshwater—in just 100 years Mint Images/Aurora Photos center_img By Elizabeth PennisiJun. 1, 2018 , 4:00 PM Email Click to view the privacy policy. Required fields are indicated by an asterisk (*) To find the genetic basis of this quick adaptation, a team led by evolutionary biologist Mark Christie from Purdue University in West Lafayette, Indiana, and his postdoc Janna Willoughby sequenced the genomes of 264 steelhead. Some came from the source waters in California that supplied the first Lake Michigan fish, while others were collected from the lake’s watershed in 1983 and 1998. By comparing those genomes, they reconstructed the steelhead’s struggles to adapt.The first batch of transplants had a hard time, likely dying off by the hundreds. But the few that survived thrived, and between 1983 and 1998, their population started to rebound and even diversify, most likely because of interbreeding with newly introduced hatchery fish, Willoughby and Christie report this week in Molecular Ecology.Three regions of DNA were quite different between the modern lake and saltwater steelhead. Two of those contain genes critical for maintaining the fish’s internal salt balance: Freshwater fish must take in extra salts, whereas saltwater fish must get rid of them. Moving salt in opposite directions requires different versions of the relevant genes. Another DNA region seems to affect wound healing. This may help the lake steelheads recover from parasitic lampreys, which are widespread in that freshwater.So how did the genes change so quickly from one version to another? Intriguingly, there was no sign that steelhead had interbred with rainbow trout to get the genes they needed to thrive. They also didn’t have to mutate, Christie explains. Instead, there were likely a few steelhead among the first batch of transplants that already had the right versions of these genes—they simply survived and reproduced much more successfully than their peers. Eventually, the less well-adapted steelhead disappeared.More work needs to be done to prove that the genetic changes are due to freshwater living and not chance, says Felicity Jones, an evolutionary biologist at the Friedrich Miescher Laboratory of the Max Planck Society in Tübingen, Germany. She and her colleagues have found that the small minnowlike fish called sticklebacks have also made the transition from saltwater to freshwater, and have undergone similar same genetic shifts. “The transition … is a major change,” Blouin explains. “It would not be surprising to see the same adaptation in multiple species.”last_img read more